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Abstract This report analyses the topological invariants of three-braided C U N ~ S  a( 1 ) .  b ( l )  
and e ( r ) .  3-braids are represented as a single phase curve ? ( I )  in a two-dimensional 
configuration space. This configuration space consists of a set of triangular regions con- 
nected at their vertices. The C U N ~  ?(I)  passes through a vertex whenever a ( [ ) ,  b ( 1 )  and 
C ( I )  are collinear. The sequence of vertices completely describes the braid (up to uniform 
twists). The length 5' of this sequence can be employed as a measure of topological 
complexity. The energy of a ret ofbraided magnetic flux tubes is expected to be proportional 
to T2+ gU2, where 9V is the lola1 winding number (or signed crossing number) of the 
braid. Second-order winding numbers are integrals of closed I-forms like dB.,. This report 
presents a third-order winding number Y( y )  which is also an integral of a closed I-farm, 
but which depends on relations between all three curves. The number 'U( y )  can be non-zero 
even when all the second-order winding numbers vanish. Furthermore, Y( y )  bears a simple 
relation to the Massey third-order linking number. 

1. Introduction 

The braid group (Artin 1947, Birman 1974) appears in several areas of mathematics 
and physics, for example knot theory, statistical mechanics (e.g. Yang and Ge 1989). 
and the study of quantum systems with fractional statistics (Dowker 1985). Braids can 
also arise in classical physics-polymer chains can be braided, as can vortex lines in 
a turbulent fluid. Magnetic field lines in the atmosphere of a star or accretion disc are 
often anchored in a turbulent convection zone; a random walk of the field lines beneath 
the surface can braid the field lines above. These braided lines store energy which can 
be released during violent reconnection events (Parker 1983, Berger 1990a, b). 

The differential equations governing a set of braided magnetic lines or  vortex lines 
(or simply braided ropes) are nonlinear and three-dimensional, and hence difficult to 
solve. Topological invariants provide an easy way of obtaining information on the 
structure and energy of braided objects. 

Section 2 presents a geometrical description of 3-braids in terms of a single phase 
curve in a configuration space, and reviews the second-order winding numbers. Section 
3 employs the generators of the cohomology ring of the braid group (Arnold 1969) to 
derive a third-order winding number for braids. In section 4 this number is related to 
the Massey third-order linking number. 

2. The geometry of 3-braids 

We visualize a braid with three strings as follows (see figure 1): the three strings are 
labelled 0, b and c. They stretch from the plane f = 0 to f = 1. Also they always move 

0305-4470191/174027+ 10%03.50 @ 1991 IOP Publishing Ltd 4027 



4028 M A  Berger 

Figure 1. A braid with three strings. The two braids shown are equivalent 

upwards in f ;  if s is arc-length along a string, then d f /ds  # 0. Each string can then be 
parametrized by 1. It will be convenient to represent positions in the planes f = constant 
by complex numbers. Thus we will let a ( f ) ,  b ( f )  and c ( f )  be complex functions of the 
unit interval. The braid can then be thought of as a record of the motions of three 
points in the complex plane. 

A set of three curves a ( f ) ,  b ( t )  and c ( f )  is a geomefrical braid. A ropological braid 
is an equivalence class of geometrical braids. If one geometrical braid can be distorted 
into another without having strings break, and without moving the endpoints at f = 0 
and I = 1 ,  then they are ambient isotopic, or topologically equivalent. 

We now describe the braid as a single curve 

y ( f ) = ( a ( f ) ,  W f ) ,  4 1 ) )  (1) 

q3= ((z,, z2,  ZJZ, z z, if i # j )  (2) 

(in the notation of Birman 1974, W3 = F,,3C). 
The configuration space V3 has six degrees of freedom. Much of the information 

carried by a curve y in W3 only serves to distinguish between different geometrical 
braids belonging to the same topological braid. In particular, at any ‘time’ 1, two 
degrees of freedom specify the centre of the triangle Aabc( f ) .  One further degree of 
freedom specifies the size of Anbc(1). But both the position and size of Anbc(f)  can 
be readily varied (except at f = 0 and f = 1) without changing the topology. 

The three remaining degrees of freedom specify the shape and orientation of the 
triangle Aabc( f ) .  These three degrees of freedom can always be specified by three 
winding angles O a h ( t ) ,  O b , ( f )  and O , . ( f )  where, e.g., 

in three complex dimensions, i.e. y :  [0,1]+ W3, where 

O n b ( l )  = Im In(a(f)- b ( f ) ) .  (3 )  

We assume --?I < OJO) G rr; at later times the precise value of O , , ( r )  can be found by 
analytic continuation. Thus -CO< O , , ( f )  <CO, and two strings winding about each other 
through one turn ( O a b ( l )  - Oab(0 )  =2-?1) are distinguished from two parallel strings. 

Consider curves y( f )  = (eah, ebr. O c a ) ( t )  in a three-dimensional space with coordin- 
ates (e.,,, Ob<, Oca). For the pigtail braid in figure 1, the curve 7 forms a closed loop, 
since Onb(l) = Oa,(0), etc. If we deform the strings shown in figure 1, then 7 should 
also deform (unless the deformation involves only uniform translations and 
expansions). The pigtail braid, of course, cannot be deformed into three vertical lines; 
this implies the impossibility of shrinking 7 to a single point. Evidently there is some 
obstruction which prevents such a shrinkage. Some points are forbidden-for example 
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no triangle can have the angles ( Oab, e,, e,) = (0, 0.0). As we will see, the 7 curve for 
figure 1 forms a loop about a forbidden region consisting of such points. But first we 
will reduce our configuration space by one further dimension. 

The sum of the windings Q(r) is 

= ( & b ( t )  - e ~ h ( o ) ) + ( e b ~ ( r ) - e b ~ ( o ) ) + ( ~ ~ ~ ( l ) - e ~ ~ ( o ) ) .  (4) 

WEQ(1) ( 5 )  

is a topological invariant (for Artin braids W = T times the (signed) crossing number). 
There is a simple correspondence between W and helicity integrals. Suppose each 
string were a vortex tube (or magnetic flux tube) with flux @. Then the gauge-invariant 
helicity of the tubes (Berger and Field 1984) would be Be= W@’/rr, plus a term arising 
from the twisting of vortex lines within the tubes. 

Now, any given geometric braid y(t)  can be deformed into a special form: a 
topologically equivalent braid which has zero winding number in the lower half, and 
a uniform twist in the upper half. The deformation takes two steps. First send the 
entire braid into the lower half, i.e. define a new braid y,(r) where 

The total winding number 

Next apply a uniform rotation to each plane t by an angle p( r), where p(0) = p(1) = 0 
andp(r)iscontinuous (-m<p<oo). Undersuch atransformationQ(r)~O(t)+31*(1). 
For our purposes set 

- 0 ( 1 ) / 3  i f O < t < +  
i f f -  - = I S l .  

The braid y,( r )  will then be transformed into an equivalent braid y2( 1 )  where 

(7) 

QJt) = 0 

e2,(r)= e,,(f)+$(t-+)w 
if 0s r $4 
if 4s r s 1. 

(8) 

In the lower half of the braid, the total winding is zero. In the upper half there is only 
a uniform twist, without any further entanglement. (In the language of group theory, 
uniform twists commute with all other braid elements; they compromise the centre of 
the braid group. The ’entangled‘ lower half of the braid corresponds to the braid group 
modulo its centre.) 

By ignoring the uniform twist upper half of the braid, we reduce the number of 
degrees of freedom to 2. Let us examine the lower half of the braid in detail. I t  will 
be convenient to employ coordinates 

(9) 
3 

4,(r) =; [e,(t)-e,(o)i. 

Since Q=O for this part of the braid, equation (4) for 0 implies that the points 
T(t)=(+ah,  &, & ) ( r )  lie in the plane ~ 3 = { @ u b + & + &  =O). The curve y( t )  for 
a geometrical braid in %, thus determines a curve ? ( I )  in P3.  If it is desired to map 
y ( f )  to ?(r )  without going through the transformation in equations (6) through (8). 
one can simply define the variables 4, by 

4, = 3 / ~ [ e , ( r )  - e,(o)-fo(t)l. (10) 
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Figure 2 shows the plane P3. The curve for figure 1 neatly makes one loop about a 
forbidden region. The plane P3 is related to the state space for windings on the 
thrice-punctured sphere (Lyons and McKean 1984). The forbidden regions have the 
shape of regular hexagons, and the allowed regions are equilateral triangles. The point 
at the centre of each allowed triangle corresponds to the physical triangle Aabc being 
equilateral. 

The interior angles of a degenerate Euclidean triangle satisfy the following con. 
straint: if one interior angle is exactly 0, then the other two interior angles must be 0 
and a. The sides of the allowed regions in figure 2 correspond to angles which violate 
this constraint. Thus the sides themselves belong to the forbidden regions. (For example, 
suppose the point a is at the origin in the complex plane, the point b = 1, and c = 1 + E A  
where E > 0 is real and A is complex. As E + 0 the point c approaches b. Meanwhile 
the interior angle at a, 8., - Bub + 0, but the other two interior angles do  not in general 
approach 0 or a.) 

Most importantly, the vertices of the P3 triangles correspond to the three points 
a ( t ) ,  b ( t )  and c ( t )  being collinear. We can label each vertex A, B or C depending on 
which of the points a ( t ) ,  b ( t )  or c ( t )  is in the middle (see figure 3). The curve 7 passes 
through a sequence of vertices. This sequence can be notated as a sequence of letters, 
like ABACBABC. Repeated letters (for example A A )  can be removed from the 
sequence; they correspond to passing through a vertex and immediately coming 
back. A deformation of the strings can remove such a trivial path. Once repeated letters 
are removed, the sequence is invariant to deformations. 

Figure 2. The plane 9, = ( ~ o h + 4 h c + + o  =O) .  A braid curve ?( I )  must stay within the 
triangular regions, and passes through a vertex whenever a(r), b ( r )  and e([)  are collinear. 
The curve i for figure 1 is shown; it passes through the sequence of vertices BACBAC. 
(See also figure 4.) 

a 

b I b l  

Figure 3. ( a )  At 1 = 0  a, h a n d  e form an equilateral triangle with positive orientation. A 
single move convens A& 10 an equilateral with negative orientation. A move of type B 
is pictured. ( b )  The corresponding move in FA. (e )  Example ofa braid with sequence BAC. 



Third-order braid inoariants 403 1 

The topology of a 3-braid can now be completely specified by giving the winding 
number 'Wand the sequence of vertices. Let us call the length of the sequence (number 
of letters) the tangling number F. The tangling number provides a measure oftopological 
complexity which can be non-zero even when the winding numbers 0,(1) - O,(O) are 
zero. 

Moffat (1990) points out that the minimum energy of a magnetic field whose field 
lines are knotted provides a measure of complexity for the knot (see also Freedman 
and He 1991). This idea can be extended to braided magnetic lines. Berger (1990% b) 
suggests that the free energy of three braided magnetic flux tubes is proportional to 
T2+ W' (free energy means energy of braided tubes minus energy of three parallel 
tubes). Furthermore, if the braiding is generated by randomnmotions in the plane, the 
mean square winding W 2  grows linearly in time, whereas 9' grows quadratically. 

We complete this section by suggesting a generalization of F to braids with n 

by its order, which equals the minimum number of crossovers of the knot as seen in 
a planar projection. A projection of a braid onto a plane will also exhibit crossovers, 
but the number of crossovers will depend on the angle of projection. One way of 
eliminating this problem is to project onto a cylinder. More precisely, choose the origin 
in C to coincide with the centre of mass of the points at the lower plane, so that 
z!(O)+z,(O)+. -. . .+ z,(O) =O.  With little loss of generality we will also require this to 
be true at I= 1. Then any braid can be distorted into a form where z , ( f ) + z 2 ( f ) + .  . .+ 
z , ( f ) = O  for all f. Next project the braid onto the unit cylinder, i.e. z , ( f ) +  zj(t)/lzi(t)l 
(if necessary deform the curves so that no points z,(f)  =O). The tangling number can 
then be defined as the minimum number of crossovers as seen in this cylindrical 
projection. It is simple to see that this definition yields an equivalent number to Y for 
n = 3. One advantage of a cylindrical projection is that the uniform rotation part of 
the braid (which is already measured by the total winding number) does not contribute 
to the number of crossovers. 

s!rIngs Z j ( l ) ,  i = !, . . . , E. R.i%a!! !ha! 2 me;IsI?x ofthe cnmp!exi!y nf a kno! is provided 

3. Third-order winding numbers 

"--:A" F^_ ... L:̂ L r l - ^  *I.-..- .."* ... :..A:.." n-_ 
DldlUJ ,U, W l l l C l l  ,,,G U l l F C  l l C L  W,UU",& I I U I I I U C I D  .an= GLfU.al, 

e ~ b ( i ) - e ~ b ( o ) = e b ~ . ( i ) - e b ~ ( o ) = e ~ ~ ( i ) - e = ~ ( o )  (11) 
have closed curves 7 in the plane 8,. One might suspect that the number of hexagons 
encircled by 7 would be given by some simple formula. In this section we derive an 
integral invariant which, for closed 7, yields the number of encircled hexagons (actually, 
the number encircled counterclockwise minus the number encircled clockwise). Section 
4 then considers links formed from braids where all the net winding numbers in 
equation (1 1) vanish. We show that the number ofencircled hexagons is then equivalent 
to the third-order Massey linking number. Throughout this and the following section 
we will make use of differential forms (see, for example, Bott and Tu 1982). The 
calculations are considerably simplified by using complex-valued forms, i.e. contangent 
vectors to the manifold %,. 

Arnold (1969) showed that the cohomology ring of the braid group on N curves 
z , ( f )  is generated by the 1-forms 
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and their exterior products. The structure of the cohomology ring is determined by 
the identity 

( 1 3 )  

For the present purposes, we set N = 3 and consider the curves y(f)  = ( a ,  b, c ) (  1 ) .  

Wjj A W j k f  Wjk A Wxi+Wkj  A W g  = o  
for any triplet zi, zj, z k .  

Let 

1 b ( t ) - a ( t )  
h o b ( f )  =-In 

27ii b ( 0 ) - a ( 0 )  

so that oab =dAOb (the complex logarithm is defined as in equation (3)). 
Now consider the integral along y, 

(is) .~., c 
J ,  ~ ( y ) = R e  (A.baAb,+AbrdA,+A,. dAab). 

By equation ( 1 3 )  the I-form 

(Ir=A,hdAbcfhhcdh,.+A, dA\.h ( 1 6 )  

is closed. As a consequence, 9( y) is the same for two homotopic curves y, and y2 in 
e3. But any two geometric braids which belong to the same topological braid have 
homotopic curves. Thus Y(y) is a topological invariant, which we will call the 
third-order winding number. 

We will now calculate "(y). For simplicity suppose that at I = 0 and f = 1 the 
points a, b and c form an equilateral triangle with unit sides. We assume that at I = 0 
the points are oriented in a positive (right-handed) sense (see figure 3 ( a ) ) .  First consider 
t i e  upper naif of the braid in equation (Sj, where the three points undergo a uniiorm 
twist through an angle W/3.  The curve y(t) moves orthogonally to P3, that is 7 stays 
at one point. From equation ( 1 5 )  the change in W(y) is 

Next consider the zero twist part of the braid, corresponding to the path 7 in P3. A 
path through a sequence of vertices V,,, n = 1,. . . , 9 in 9, can be decomposed into 
T moves, where each move begins and ends with an equilateral Aabc (as in figure 
3 ( c ) ) .  At the middle of each move, the three points a, b, c are collinear, corresponding 
to 7 passing through a vertex. Note that the orientation of Aabc changes during each 
move, and recall that each vertex has type A, B or C depending on which point a, b 
or c is in the middle. If move n flips the orientation from positive to negative, then 
integrating J, over the move gives a contribution to 9 ( y )  of 

bh<( v n ) - ' $ ~ a ( ~ w )  type( V.) = A 
f( vn) = '#"a( - @oh ( v m )  type( V.) = (18) I b o b  ( vr?) - b b c (  type( V,,) = C. 

For a move from negative to positive orientation,f( V,,) is multiplied by -1. The total 
for a path y (including the twist part) is thus 

1 Zr 

9 ( y ) =  1 (-1)"-'f(V.)+-W2. 
" - 1  247i2 
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(The imaginary part of the integral of J, has been neglected so far. However, it is 
simple to show that the imaginary part vanishes after any two successive moves.) The 
third-order winding number can be defined for any 3-braid. However, if + is a closed 
path in P,, then Y( f) = Y( y )  - W2/24m2 has a simple geometrical interpretation. The 
coordinates of the six vertices of the hexagon encircled by the pigtail braid of figure 
1 are shown in figure 4. Equation (19) gives Ur( +) = 1 for a path encircling the hexagon 
counterclockwise. An arbitrary closed path can be expressed as a sum of small paths, 
each enclosing a single hexagon. From this one may conclude that any closed path in 
9, yields a value for Y(f) equal to the number of hexagons encircled counterclockwise. 

-3) 

A 
Figure 4. The coordinates (&, &, @,) lor the braid of figure 1 

4. The Massey triple product 

Links can be formed from n-braids provided that the set of points {zj(0), i= I , .  , , , n )  
at the bottom plane is identical to the set {zj(l) ,  i = I , .  . . , n }  at the top plane. The 
strings inside the braid are transformed into loops by identifying the top and bottom 
planes f = O  and f = I .  Not all braid invariants become link invariants, however. The 
diiiicuity is that many ditierent braids correspond to the same iink. Markov's theorem 
(e.g. Birman 1974) describes how to move from one braid to another braid with the 
same associated link. This provides a powerful method of deciding whether a braid 
invariant is also a link invariant. Here, however, we will employ a different technique 
based on the Massey triple product to show that " ( y )  extends to a link invariant when 
the three net winding numbers in equation (11) vanish. 

D S L U I O  pcvL.ssurrrg, w s  purm U U L  L u a l  Y \ y ,  rrray !!U, uc a l l l l l i  I I I v a l E a l l l  II y IS nor 
closed. As an example, consider the braid with W =  0 and vertex sequence BACA. 
(For simplicity we have chosen an example where a ( l )  = o(O), b( 1) = b(O), e( 1) = c ( 0 ) .  
With this condition each string ties to itself when top and bottom planes are identified. 
This allows an unambiguous assignment of the symbols a, b and E to the three strings.) 
Now after the planes 1 = 0 and f = 1 have been identified, there is no special starting 
poi=! For !he br&d--nr?e co??!d s!zr! !he brzid seq~cr?ce I !  ~ n y  YZ!OC of !. For cxaz-p!e, 
the sequence CABA will lead to the same link as BACA. But rlr( BACA) = 0, whereas 
W(CABA)=-I .  

First we briefly review the Massey triple product, and then show how an associated 
topological invariant, the third-order linking number, can be calculated from Y( 7 ) .  

D^P^_^ __^^^^-I:__ --:-. ̂__. .L̂. .r ,,_. , _^. L^ ~ ,:-a_ :....--:--. :'- ~- :- 
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The triple product (Massey 1958,1968, Fenn 1983) is a mapping between cohomology 
classes. Using de Rham cohomology, it can be expressed as  an operation on differential 
forms, as will be done below. Berger (1990~) provides a description in terms of 
three-dimensional vector calculus. 

Consider three closed curves C,, C2,  C, forming a link in three-dimensional space. 
Enclose each curve in a thin toroidal volume U;, i = 1,2,3.  Define I-forms Ai which 
satisfy dAi = 0 outside U,. For a curve encircling U; once, the integral of Ai is 
,ll.., r A .  =a. H~~~ a. - I  cl" hP pegarded 2 s  a magnp!ic flux dAi contained within !hp vo!ume 
U,, and oriented along Ci. 

Let us restrict ourselves for the moment to the region U' external to the three 
volumes U;. If no two of the three curves are linked, then it can be shown that the 2-forms 

G,= A2n A, (20) 
etc, are exact; i.e. there exist F, such that G; = dF[. We can then define Massey fields 

M, =A, A F, -A2 A F2 
M 2 =  A, n F,-A,  n F, (21) 
M3 = A2 A F2- A, A F,. 

Massey triple products are the equivalence classes of these fields, modulo gauge 
transformations of Ai and F,. 

Next define the integrals 

m.. = Mj,  
4' J,, 

One can readily show that 

(23) m , 2 = m 2 3 = m , , = - m , , = - m , 2 = - m , 3 .  

A third-order linking number can then be defined by 
dd = (@,@2@3)-'m,2. 

This number is invariant to gauge transformations of A, and F,, and is also invariant 
to deformations of the three curves C,.  For three unlinked curves it yields 0, while for 
the Borromean rings it yields + l ,  Berger (1990~) showed that A could be computed 

external region U'. Since C, and C, are unlinked as a pair for any two curves i and 
J, we can define within a neighbourhood of a function &,), where A, =dd, , , .  With 
the help of these functions the exact forms G, can be defined so that they are exact 
everywhere. For example, in U, 

^ ^  -- : -.---- 1 ^I^^^ 0 T^ -I_- .I." f - ^ r  A--.. r L ^  -""*A,..:-.. ^P .L̂  C-lrl" P. t^ *I.., ea 'Ill , r r r G g , a r  ' I1U"~ c,. ,U UY L l l l J ,  u 1 > 1  ULYY L l L C  I L I L I L L . L I " I I  U L  L l l r  I l b l Y 1  ut L V  L1.C 

G3= A, A A2-&112 dA, .  
Next apply Stokes' theorem to equations (22) and (24) for the linking number to obtain 

,- 
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Let us go back to braided curves. The closed curves C, can be formed from braided 
curves by identifying top and bottom planes f = 0 and f = 1 (the braid of figure 1 
becomes the Borromean rings). If the second-order winding numbers vanish, @,(l) - 
@,(O)=O, then the linkage between any two closed curves will also vanish. Thus a 
third-order linking number exists. We now wish to show that equation (28) for 1 is 
equivalent to equation (15) for " ( 7 ) .  

We first comb the braid. Artin (1947) show that any braid can be put into a unique 

and c ( f )  are vertical (the points b and c are fixed), while curve a ( t )  winds about b 
and c. In the second half of the braid a is fixed, while b ( t )  twists about c, but not 
about a. For our purposes the second half of the braid is not present; otherwise 
Obc( 1) - @,,(O) # 0. The result is that any 3-braid with vanishing second-order winding 
numbers can be distorted into a form where b and c are fixed. 

Next make the correspondence with equation (28) for Y, using subscripts a, b, c 
rather than 1, 2, 3. We need to find Fa, and Ab. First, because b is vertical, the 

.-̂ _... CA" 1 I.-":>" .I.:̂  C"...- ^ ^ _ ^  :-." ^P ....- :.. --- L-IF ..&-*I-.. I.-":> -..-, ~" L / , I  
,U,,,,. ruL , - " l d l u D  ,,,IS l V l l l l  C"IISIS,S U1 L W U  p'n,rs. 111 U L I S  ,,a,, U, L l l G  UL'nLY, C Y L I C I  "\ . I  

1-form A, at  the point a ( t )  can be chosen to be 

Ada( f ) )=gdO, , ( a ( t ) )  @b 

(and similarly for A<). We can then let &,,, = @,8,./27r. Furthermore 

G. =dFa =Ab n A, =- @bQcdl?ob n do,,. 
4?r' 

Now, 

1 
rubrc. 

dgab p, deco = ~ n -.IuLI I . ,I n AV -._ 
so a suitable choice for Fa is 

In r, d In rob. @ b @ c  F, = -- 
47r2 

With these cqxessioxs Fc: Fa, and Ab, eqnntioc (28) gives 

1=, (-lnr,dlnr,,+@,dB,,). 4rr I.? 
The third-order winding number " ( 7 )  for fixed b and c (equations 

The terms involving In r,(O) and 8,.(0) vanish after integration. Comparing equations 
(33) and (35) gives the final result, 4 =VY(y). 
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